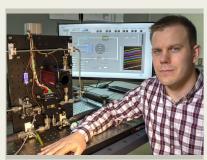
Flow Boiling in Microgap Coolers - Validation via Suborbital Flight

Completed Technology Project (2017 - 2018)

Project Introduction


This modest research program completes the effort that had to be terminated early in FY17. The focus is on completing testing of the previously developed micro-channel coolers. Specific efforts in this restart include the initial development of a miniature two-phase flow loop to be flown aboard a suborbital flight awarded by the NASA Flight Opportunities Program. Flight validation of the ground-testing results will complete the technology maturation required for near-term mission infusion.

Anticipated Benefits

This technology, once demonstrated in a zero-gravity environment, will allow direct cooling of high heat flux chips or laser heads, thus allowing use of higher power devices in a compressed space.

Primary U.S. Work Locations and Key Partners

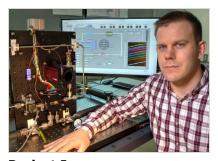
Flow Boiling in Microgap Coolers - Validation via Suborbital Flight

Table of Contents

Project Introduction	1
Anticipated Benefits	1
Primary U.S. Work Locations	
and Key Partners	1
Images	2
Project Website:	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Technology Areas	3
Target Destination	3

Center Innovation Fund: GSFC CIF

Flow Boiling in Microgap Coolers - Validation via Suborbital Flight


Completed Technology Project (2017 - 2018)

Organizations Performing Work	Role	Туре	Location
Goddard Space Flight Center(GSFC)	Lead Organization	NASA Center	Greenbelt, Maryland
University of Maryland-College Park(UMCP)	Supporting Organization	Academia Asian American Native American Pacific Islander (AANAPISI)	College Park, Maryland

Primary U.S. Work Locations

Maryland

Images

Project Image

Flow Boiling in Microgap Coolers - Validation via Suborbital Flight (https://techport.nasa.gov/imag e/35805)

Project Website:

https://www.nasa.gov/directorates/spacetech/home/index.html

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Center / Facility:

Goddard Space Flight Center (GSFC)

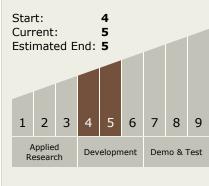
Responsible Program:

Center Innovation Fund: GSFC CIF

Project Management

Program Director:

Michael R Lapointe


Program Manager:

Peter M Hughes

Principal Investigator:

Franklin L Robinson

Technology Maturity (TRL)

Center Innovation Fund: GSFC CIF

Flow Boiling in Microgap Coolers - Validation via Suborbital Flight

Completed Technology Project (2017 - 2018)

Technology Areas

Primary:

Target Destination

Foundational Knowledge

